Universal cycles for permutations

نویسنده

  • J. Robert Johnson
چکیده

A universal cycle for permutations is a word of length n! such that each of the n! possible relative orders of n distinct integers occurs as a cyclic interval of the word. We show how to construct such a universal cycle in which only n + 1 distinct integers are used. This is best possible and proves a conjecture of Chung, Diaconis and Graham.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence class universal cycles for permutations

We construct a universal cycle of n-permutations using n + 1 symbols and an equivalence relation based on differences. Moreover a complete family of universal cycles of this kind is constructed.

متن کامل

Explicit Constructions of Universal Cycles on Partial Permutations

A k-partial permutation out of n elements is a k-tuple (p1, p2, . . . , pk) with k distinct elements and pi ∈ [n] = {1, 2, . . . , n}, i = 1, 2, . . . , k. Let (p1, p2 . . . , pn) be a full permutation of size n, where the elements are distinct and pi ∈ [n], i = 1, 2, . . . , n. Then we say the k-partial permutation (p1, p2, . . . , pk) is induced from the full permutation. A universal cycle on...

متن کامل

Overlap Cycles for Permutations: Necessary and Sufficient Conditions

Universal cycles are generalizations of de Bruijn cycles and Gray codes that were introduced originally by Chung, Diaconis, and Graham in 1992. They have been developed by many authors since, for various combinatorial objects such as strings, subsets, and designs. Certain classes of objects do not admit universal cycles without either a modification of either the object representation or a gene...

متن کامل

Universal structures Fan Chung cycles for combinatorial

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

Universal cycles of classes of restricted words

It is well known that Universal Cycles (U-Cycles) of k-letter words on an n-letter alphabet exist for all k and n. In this paper, we prove that Universal Cycles exist for several restricted classes of words, including non-bijections, “equitable” words (under suitable restrictions), ranked permutations, and “passwords”. In each case, proving connectedness of the underlying DeBruijn digraph is th...

متن کامل

Universal Cycles for Weak Orders

Universal cycles are generalizations of de Bruijn cycles and Gray codes that were introduced originally by Chung, Diaconis, and Graham in 1992. They have been developed by many authors since, for various combinatorial objects such as strings, subsets, permutations, partitions, vector spaces, and designs. One generalization of universal cycles, which require almost complete overlap of consecutiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009